DAWSON COLLEGE

Mathematics Department

Final Examination

Linear Algebra

201–NYC–05 (Commerce)

Fall 2021

- 1. a) (5 marks) Use Gauss-Jordan elimination to find the general solution of the system.
 - b) (1 mark) Find a particular solution in which $x_2 = 5$ and $x_3 = 0$.

$$-x_1 - 2x_2 + 2x_3 - 4x_4 = -3$$

$$3x_1 + 6x_2 - 5x_3 + 14x_4 = 1$$

$$4x_1 + 8x_2 - 6x_3 + 20x_4 = -4$$

- 2. (6+4 marks) Given the system of linear equations $\begin{cases} 2x y 3z = 3 \\ -x + 4y + z = 6 \\ 2x + 4y z = 11 \end{cases}$
 - a) Solve the system using the inverse matrix. Use the **adjoint** matrix to find the inverse.
 - b) Use Cramer's rule to solve the system for "y" only.
- 3. (4 marks) Let $A = \begin{bmatrix} -1 & 3 \\ 2 & 1 \\ 0 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -1 \\ 4 & 2 \\ 1 & -3 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. Solve for $X : (CX^{-1} + I)^{-1} = XA^{T}B$.
- 4. (3 marks) If $A = \begin{bmatrix} 4 & 2 \\ -1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 \\ 7 & 7 \end{bmatrix}$, find elementary matrices E_1 and E_2 such that $E_2E_1A = B$.
- 5. (3 marks) Simplify as much as possible $B\left(\left(2C^{-1}B\right)^{-1}\cdot\left(D^{T}C\right)^{-1}\cdot\left(4A^{T}D\right)^{T}+I\right)\cdot\left(BD^{0}+2A\right)^{-1}.$
- 6. (4 marks) Determine the values of *a* such that the system has
 1) a unique solution, 2) infinitely many solutions, 3) no solution:

$$\begin{cases} x + 2y + 4z = 3 \\ y - 7az = 2 \\ -x - 3y + (a^{2} + 2)z = a - 6 \end{cases}$$

- 7. (3 marks) Let *A* be an invertible skew-symmetric $n \times n$ matrix and *B* be a symmetric $n \times n$ matrix. Is a matrix $X = A^{-1}BA^2 + A^2BA^{-1}$ symmetric, skew-symmetric or neither?
- 8. (4 marks) Evaluate the determinant by a combination of row operations and cofactor expansion (at least one row operation must be performed).

$$\begin{vmatrix} 1 & 2 & -4 & 2 \end{vmatrix}$$

$$\begin{vmatrix} 1 & -1 & -3 & 2 \end{vmatrix}$$

9.
$$(4+3+3 \text{ marks}) \text{ If } A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \text{ and } \det(A) = -2, \text{ then find}$$

a)
$$\begin{vmatrix} 2d & a+g & -g+a \\ 6e & 3b+3h & -3h+3b \\ 2f & c+i & -i+c \end{vmatrix}$$
b)
$$\det\left(\left(3A\right)^2 \cdot \det(A^{-1})\right)$$

- c) $\det(4A^{-1} + adj(2A))$
- (3+3+3 marks) Let $\vec{u} = (4, 2, -3)$, $\vec{v} = (2, -1, x)$ and $\vec{w} = (-3, 1, -2)$. 10.
 - Find the value(s) of x such that the vector $\vec{v} \vec{u}$ is perpendicular to $\vec{v} + \vec{u}$.
 - Find $Proj_{\overline{w}}(2\vec{u})$
 - c) For which value(s) of x do the vectors \vec{u} , \vec{v} and \vec{w} lie in the same plane when positioned so that their initial points coincide?

11.
$$(3+3 \text{ marks}) \text{ If } (4\vec{a}+5\vec{b}) \times (2\vec{a}+3\vec{b}) = (2,4,6), \text{ then}$$

- a) Find the area of the triangle determined by \vec{a} and \vec{b} .
- b) Find all unit vectors perpendicular to \vec{a} and \vec{b} .
- 12. (3+3 marks) Consider two planes -x+y-2z=1 and 3x-2y+z=2
 - a) Find the parametric equations of the line of intersection of these planes.
 - b) Find parametric equations of the line that passes through the point A(2,-1,3) and is parallel to both planes.

13. (3+3 marks) Given a point
$$A(2,-1, 3)$$
 and a line
$$\begin{cases} x = -1+t \\ y = 1-2t \\ z = 2+2t \end{cases}$$

- a) Find the distance from the point A to the line (without finding the closest point).
- b) Find a point on the line which is closest to the point A.
- 14. (3 Marks) Determine whether the following statement is true or false. If the statement is true, then prove it. If the statement is false, then provide a counterexample that shows that the statement is not

"Let A and B be (2021×2021) matrices, then if $A^TB + BA^T = 0$ then at least one matrix A or B is not invertible".

15. (3+3+3 marks) Suppose L1:
$$\begin{cases} x = -1 + t \\ y = 1 - 2t \text{ and L2: } \begin{cases} x = 3 + 2u \\ y = 2 - u \end{cases} \\ z = 3 + 2t \end{cases}$$

- a) Show that L1 and L2 are skew lines.
- b) Find the distance between these lines.
- c) Find the equation of the plane which contains the line L1 and is parallel to the line L2.

16. (7 marks) Maximize
$$P = 2x_1 + x_2 + 4x_3$$
 subject to
$$\begin{cases} 4x_1 + x_2 - x_3 \le 3 \\ x_1 + x_3 \le 2 \\ 3x_1 + 2x_2 + x_3 \le 15 \end{cases}$$

$$(x_1, x_2, x_3 \ge 0)$$
17. (7 marks) Minimize $C = 2x_1 + 9x_2$ subject to
$$\begin{cases} 2x_1 + 5x_2 \ge 2 \\ x_1 + 3x_2 \ge 5 \\ 3x_1 + x_2 \ge 1 \end{cases}$$

Answers

1. a)
$$x_1 = -13 - 2t - 8s$$
, $x_2 = t$, $x_3 = -8 - 2s$, $x_4 = s$. b) $x_1 = 9$, $x_2 = 5$, $x_3 = 0$, $x_4 = -4$.

2. a)
$$A^{-1} = \begin{bmatrix} -\frac{8}{19} & -\frac{13}{19} & \frac{11}{19} \\ \frac{1}{19} & \frac{4}{19} & \frac{1}{19} \\ -\frac{12}{19} & -\frac{10}{19} & \frac{7}{19} \end{bmatrix}$$
, $x = 1$, $y = 2$, $z = -1$.; b) $y = 2$

3.
$$X = (A^T B)^{-1} C = \begin{bmatrix} -\frac{3}{2} & -\frac{3}{2} \\ -\frac{11}{5} & -\frac{23}{5} \end{bmatrix}$$

4.
$$E_1 = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{bmatrix}$$
, $E_2 = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix}$. Other possible answers.

5. *I*

6. 1)
$$a \ne 1$$
, $a \ne 6$; 2) $a = 1$; 3) $a = 6$

7. skew-symmetric

8. -57

9. a)
$$-24$$
; b) $-\frac{729}{2}$; c) 32

10. a)
$$\pm 2\sqrt{6}$$
; b) $\left(\frac{12}{7}, -\frac{4}{7}, \frac{8}{7}\right)$; c) 1.9.

11. a)
$$\frac{\sqrt{14}}{2}$$
; b) $\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$, $\left(-\frac{1}{\sqrt{14}}, -\frac{2}{\sqrt{14}}, -\frac{3}{\sqrt{14}}\right)$

12. a)
$$x = 4+3t$$
, $y = 5+5t$, $z = t$; b) $x = 2+3s$, $y = -1+5s$, $z = 3+s$.

13. a)
$$\sqrt{5}$$
; b) $(0,-1, 4)$

14. True

15. b)
$$\frac{1}{\sqrt{2}}$$
; c) $y+z-4=0$

16.
$$P = 13$$
, $x_1 = 0$, $x_2 = 5$, $x_3 = 2$.

17.
$$C = 10$$
, $x_1 = 5$, $x_2 = 0$.