DAWSON COLLEGE DEPARTMENT OF MATHEMATICS

FINAL EXAMINATION

CALCULUS-III

May 24, 2016
Time: 2:00 pm-5:00 pm

Instructor: A. Panait, T. Kengatharam

Name:
ID:

Instructions:

- Translation and regular dictionaries are permitted.
- Scientific non-programmable calculators are permitted.
- Print your name and ID in the provided space.
- This examination booklet must be returned intact.

This examination consists of 20 questions. Please ensure that you have a complete examination before starting.
(1) [5 marks] Find a power series representation and its radius of convergence for the function

$$
f(x)=\frac{2 x}{(1+2 x)^{2}}
$$

(Hint: $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$)
(2) [5 marks] Find the sum of the series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}(n+1)}{2^{n+2}}
$$

(Hint: You may use question (1) for a specific value of x)
(3) [5 marks]Approximate the sum of the convergence series $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{10^{n} n!}$ correct to four decimal places.
(4) [5 marks]Evaluate the integral $\int_{0}^{1} x e^{-x^{3}} d x$ as an infinite series. (Hint: You may use $\left.\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=e^{x}\right)$
(5) [5 marks]Consider the curve with parametric equations $x=e^{t}, y=t e^{-t}$. Find $\frac{d^{2} y}{d x^{2}}$. For which values of t is the curve concave upward?
(6) [5 marks]Sketch the curve with polar equation $r=1-\cos \theta$ for $0 \leq \theta<2 \pi$.
(7) [5 marks] Find the equation of the tangent line to the curve with parametric equations $x=1+\sqrt{t}, y=e^{t^{2}}$ at the point $(2, e)$.
(8) [5 marks] Find the arc length of the curve $\underline{r}(t)=(\cos t, \sin t, \ln (\cos t))$ for $0 \leq t \leq \pi / 4$.
(9) [5 marks] Show that the curvature of a circle with radius a is $\frac{1}{a}$.
(10) [5 marks] Find the equation of the osculating plane to the curve $\underline{r}(t)=$ $\left(t, t^{2}, t^{3}\right)$ at $(1,1,1)$.
(11) [5 marks]Study the continuity of

$$
f(x, y)=\left\{\begin{array}{ccc}
\frac{x y \cos y}{3 x^{2}+y^{2}} & \text { if } \quad(x, y) \neq(0,0) \\
\frac{1}{4} & \text { if } \quad(x, y)=(0,0)
\end{array}\right.
$$

(12) [5 marks] Find the maximum of the function $f(x, y, z)=3 x+2 y+4 z$ under the constrant $g(x, y, z)=x^{2}+2 y^{2}+6 z^{2}-1=0$.
(13) [5 marks] Find all critical points of $f(x, y)=3 y^{2}-2 y^{3}-3 x^{2}+6 x y$ and classify them.
(14) [5 marks]If a particle with mass m moves with position vector $\underline{r}(t)$, then its angular momentum is defined by $\underline{L}(t)=m \underline{r}(t) \times \underline{v}(t)$ and its torque as $\underline{\tau}(t)=m \underline{r}(t) \times \underline{a}(t)$, where $\underline{v}(t)$ and $\underline{a}(t)$ are the particle's velocity and accelaration respectively. Show that $\underline{L}^{\prime}(t)=\underline{\tau}(t)$.
(15) [5 marks]If $z=x \sqrt{4+x^{2} y^{2}}, x=r^{2}+s^{2}$ and $y=r^{2} s^{2}$ find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial r}$ when $r=1$ and $s=0$.
(16) [5 marks]Find the volume of the solid enclosed by the paraboloid $z=x^{2}+3 y^{2}$ and the planes $x=0, y=1, y=x$ and $z=0$.
(17) [5 marks] Find the volume of the solid that lies inside the sphere $x^{2}+y^{2}+z^{2}=$ 16 and outside the cylinder $x^{2}+y^{2}=4$.
(18) [5 marks]Compute the volume of the tetrahedron bounded by the plane $x+2 y+3 z=6$ and the three coordinate planes.
(19) [5 marks] Using cylindrical coordinates evaluate $\iiint_{E} x^{2} d v$ where E is the solid that lies within the cylinder $x^{2}+y^{2}=1$, above the plane $z=0$ and below the cone $z^{2}=4 x^{2}+4 y^{2}$.
(20) [5 marks] Prove that $\iiint_{E} z e^{\left(x^{2}+y^{2}+z^{2}\right)^{6}} d V \leq 0$, where E is the lower hemisphere $\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1, z \leq 0\right\}$.
(Hint: you may use the spherical coordinates $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=$ $\rho \cos \phi$ for which $d V=\rho^{2} \sin \phi d \rho d \phi d \theta$.)

