DAWSON COLLEGE DEPARTMENT OF MATHEMATICS

FINAL EXAMINATION

CALCULUS-III

May 24, 2016

Time: 2:00 pm-5:00 pm

Instructor: A. Panait, T. Kengatharam

Name: ID:

Instructions:

- Translation and regular dictionaries are permitted.
- Scientific non-programmable calculators are permitted.
- Print your name and ID in the provided space.
- This examination booklet must be returned intact.

This examination consists of 20 questions. Please ensure that you have a complete examination before starting. (1) [5 marks]Find a power series representation and its radius of convergence for the function

$$f(x) = \frac{2x}{(1+2x)^2}.$$

 $(\text{Hint:} \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n)$

(2) [5 marks]Find the sum of the series

$$\sum_{n=0}^{\infty} \frac{(-1)^n (n+1)}{2^{n+2}}.$$

(Hint: You may use question (1) for a specific value of x)

 $\mathbf{2}$

(3) [5 marks]Approximate the sum of the convergence series $\sum_{n=1}^{\infty} \frac{(-1)^n n}{10^n n!}$ correct to four decimal places.

(4) [5 marks]Evaluate the integral $\int_0^1 x e^{-x^3} dx$ as an infinite series. (Hint: You may use $\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$)

(5) [5 marks]Consider the curve with parametric equations $x = e^t, y = te^{-t}$. Find $\frac{d^2y}{dx^2}$. For which values of t is the curve concave upward?

(6) [5 marks]Sketch the curve with polar equation $r = 1 - \cos \theta$ for $0 \le \theta < 2\pi$.

(7) [5 marks] Find the equation of the tangent line to the curve with parametric equations $x = 1 + \sqrt{t}, y = e^{t^2}$ at the point (2, e).

(8) [5 marks]Find the arc length of the curve $\underline{r}(t) = (\cos t, \sin t, \ln(\cos t))$ for $0 \le t \le \pi/4$.

(9) [5 marks]Show that the curvature of a circle with radius a is $\frac{1}{a}$.

(10) [5 marks]Find the equation of the osculating plane to the curve $\underline{r}(t) = (t, t^2, t^3)$ at (1, 1, 1).

(11) [5 marks]Study the continuity of

$$f(x,y) = \begin{cases} \frac{xy\cos y}{3x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ \frac{1}{4} & \text{if } (x,y) = (0,0) \end{cases}.$$

(12) [5 marks]Find the maximum of the function f(x, y, z) = 3x + 2y + 4z under the constrant $g(x, y, z) = x^2 + 2y^2 + 6z^2 - 1 = 0$. (13) [5 marks]Find all critical points of $f(x, y) = 3y^2 - 2y^3 - 3x^2 + 6xy$ and classify them.

(14) [5 marks] If a particle with mass m moves with position vector $\underline{r}(t)$, then its angular momentum is defined by $\underline{L}(t) = \underline{mr}(t) \times \underline{v}(t)$ and its torque as $\underline{\tau}(t) = \underline{mr}(t) \times \underline{a}(t)$, where $\underline{v}(t)$ and $\underline{a}(t)$ are the particle's velocity and accelaration respectively. Show that $\underline{L}'(t) = \underline{\tau}(t)$.

(15) [5 marks]If $z = x\sqrt{4 + x^2y^2}$, $x = r^2 + s^2$ and $y = r^2s^2$ find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial r}$ when r = 1 and s = 0.

(16) [5 marks]Find the volume of the solid enclosed by the paraboloid $z = x^2 + 3y^2$ and the planes x = 0, y = 1, y = x and z = 0. (17) [5 marks]Find the volume of the solid that lies inside the sphere $x^2 + y^2 + z^2 = 16$ and outside the cylinder $x^2 + y^2 = 4$.

(18) [5 marks]Compute the volume of the tetrahedron bounded by the plane x + 2y + 3z = 6 and the three coordinate planes.

(19) [5 marks]Using cylindrical coordinates evaluate $\int \int \int_E x^2 dv$ where E is the solid that lies within the cylinder $x^2 + y^2 = 1$, above the plane z = 0 and below the cone $z^2 = 4x^2 + 4y^2$.

(20) [5 marks]Prove that $\int \int \int_E z e^{(x^2+y^2+z^2)^6} dV \leq 0$, where E is the lower hemisphere $\{(x, y, z) \mid x^2 + y^2 + z^2 \leq 1, z \leq 0\}.$

(Hint: you may use the spherical coordinates $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$ for which $dV = \rho^2 \sin \phi d\rho d\phi d\theta$.)